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ERRATA

PAGE 18.

The far right of Eq. (33) should read 12i M (H) not

4a Tm (Hi).

PAGE 19, line 11.

K is - 130G not 130G.

PAGE 19.

Eq. (37) should be gPH TT= gpH - 4lk us 4a k gp14 - 4lk

- .309 cm.-I

Since all the exchange Integrals are negative, all numerl-

cal values quoted should be interpreted as being the absolute

value.
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ABSTRACT

The problem of deducing the values of the exchange integrals in yttrium- and

gadolinium- iron garnet from measurements of the magnetization and the magnetic con-

tribution to the specific heat at low temperatures is considered. For these garnets the spin

wave normal modes can be found by solving the semi-classical equations of motion which

give rise to a set of n simultaneous linear equations, where n is the number of magnet-

ically inequivalent ions in the unit cell. Expressions for the thermodynamic functions at

low temperatures in terms of the frequencies of the normal modes are given assuming the

validity of the spin wave approximation. It is argued that the temperature variation of

the frequency of these normal modes on the macroscopic properties can be completely

accounted for without considering the zero point energy explicitly.

Due to the size of the unit cell, the equations for the frequencies of the normal

modes can only be solved numerically for general values of k. Such solutions are ob-

tained for k lying along a [I 11 ] direction for various values of the exchange integrals,

and the thermodynamic functions corresponding to these choices of parameters are

calculated. In the case of yttrium iron garnet, the value of D, the coefficient of

2 2
a k in the acoustic dispersion law, is reliably known and fixes one linear combination

of Jaa' Jad , and Jdd . By comparing our calculations with the magnetization data of

Solt, it was established that Ja/Jad = .2, but since the magnetization was not very

sensitive to variations of the ratio JddJad its value could not be estimated precisely.
-1 -1

Taking Jd .2 gives =aa Jdd 6.35 cm and Jod 31 .8 cm

For GdIG the specific heat data below 20K is not very much influenced by the

exact values of the iron-iron exchange integrals which were taken to be those quoted

above for yttrium iron garnet. Again one combination of J acnd Jd is known from
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the calorimetric determination of the single ion splitting. By comparing the specific heat

data below 5? K with calculations for various values of J ac/Jdc it was possible to determine
-1 -I

Jac and Jdc separately: Jdc = 7.00 cm and Jac = 1 .75 cm . These values are about

25% larger than what one would expect using the Weiss molecular field approximation.
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I. INTRODUCTION

Recently many investigations of the behavior of the series of iron garnet compounds

have been made. Pauthenet first interpreted their magnetic properties below the Neel

point at 5500K using the Weiss molecular field (WMF) approximation. More recently it has

been demonstrated2-5 that at the lowest temperatures one must use the spin wave approxi-

mation in many cases to interpret the thermal and magnetic properties of the iron garnets.

The earliest calculations3,4 gave a value of the excitation energy of the various normal

modes (spin waves) for k = 0, where k is a vector of the first Brillouin zone. While this

is often sufficient to describe the resonance behavior of the iron garnets, it would seem

desirable to make more accurate calculations of the macroscopic properties which take Into

account the k dependence of the excitation energies. Tinkham5 has made such a calcu-

lation for a simplified model of the interactions in ytterbium iron garnet (YbIG). He has

shown that there are spin wave modes whose energy is not very dependent on k and is

roughly equal to the energy of the single ion splitting of the rare earth ion in the WMF

6
approximation, which can be determined calorimetricolly. Thus the physical picrure of

thu magnetic behavior of the iron garnets can be considered to be well understood. The

aim of the present more detailed calculation is twofold. First, it was felt that by making

accurate calculations of the spin wave spectrum for k. 0 a more detailed comparison

between theory and experiment could be made. Second, it was of interest to see the

correspondence in detail between such a complete calculation and other calculations, such

as that using the WMF approximation, which do not take full cognizance of the structure

of the unit cell.

For yttrium iron garnet (YIG) and gadolinium iron garnet (GdIG) the difficulty

in such a calculation arises from the complexity of the unit cell. As is well known, the



frequencies of the normal modes of an isotropic spin system can be found by solving the

classical equations of motion, which give rise to a secular equation whose degree Is In

general equal to the number of magnetic ions in the unit cell. A considerable simplifl-

cation in the numerical calculations is obtained if one assumes that the energy surfaces

in k space are spherical. Under this assumption it is only necessary to solve the secular

equation for k lying along a [111] direction, in which case the secular equation can

be factored. It seems unlikely that this simplification could introduce significant errors

into the calculation of the macroscopic properties, because the thermodynamic functions

do not depend sensitively on the exact details of the frequency spectrum.

II. CALCULATION OF THE SPIN WAVE SPECTRUM

A. Lattice Structure

Before calculating the excitation spectrum of spin waves, it is necessary to dis-

cuss briefly the lattice structure of the iron garnets. The crystal structure of the iron

10 7
garnets is cubic, the space group being 0h - lao3d. The most important symmetry pro-

perty of the crystal is that the [I I I] direction is a threefold axis. In Table I we give

the positions of the magnetic ions in the unit cell. Each unit cell contains four formula

units of iron garnet, 5Fe 2 03 .3M 203 , where M is yttrium or any of the rare earths from
I

samarium to lutetium. Studies of the magnetic behavior of the garnets show that the

iron ions on the a and d sublattices are strongly coupled together antiferromagnetically

0
with a resulting Neel temperature of about 550 K. When rare earth ions occupy the c

sites, their spin moments are coupled antiferromagnetically to the resultant moment of

the a and d sublattices. This couplng, which is much weaker and hence does not affect

the Neel temperature, produces anomalies in the specific heat and magnetization below



-6-

300 K. The magnetic ions are also subjected to a crystalline electric field, which often

produces an easy axis of magnetization along a [ 11] direction.8'9 For ions which are
3+ G3+,

in an S state, e.g., for Fe or Gd 3 the strength of this field corresponds to splittings

-1 8
of the order of .01 cm or less and hence can be neglected for the present calculations.

B. The Equations of Motion of an Isotropic Spin System

We now treat the case of an isotropic system of interacting spins in an external

magnetic field, H, for which the Hamiltonian is,

3C=E J . S g (1)
Ir r.LL ma i r r.P t ' r()

wher So ananra. -
where S and gr are the spin and g value of the ion at r , 0 is the Bohr magneton,

and J r' is an interaction coefficient. The ions of the three magnetic sublattices are

assumed to interact with one another only if they are the closest pair in the sublattices in

question. The dipolar interactions correspond to energies which are very much smaller

than iron-rare earth exchange energy and hence are taken into account only insofar as

their effect is equivalent to that of a demagnetizing field which can be included in H.

Semi-classically one uses the torque equation to determine the frequencies of the normal

modes:

dS
=Y (rZi x H) (2a)

dt r

dS

-r S x ( 2Jr r' Sr)+r H ()

d t

where Vr is the gyromagnetic ratio of the ion at r. Quantum mechanically, the equations
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of motion are

<nlE[X,S +]3m) = w (nl Sr Ir) (3a)

and

(n I CK, S r"Jim) -Xwu (nj S r-1m) (3b)

r r± x y
where S = s. t rS . One finds, using Eq. I and the commutation relations,-r "r r

S x S = iS , that

r r r r' (S r r -

and

-s-z s.Z -
1K" s-r = "gr P +2 r' (r Sr' r 'S r ' (4b)

if the magnetic field is oriented in the plus z direction. In the random phase approxi-
1R A 0 z z 11

mation (RPA) one replaces the operator S by its thermal value, (S ). Thisr r

corresponds exactly to linearizing the semiclassical equations of motion.

+ -* + ik (R+
In either case if one writes Sk = (2 Nuc) r S ek..' R R*+,

where T denotes the position of an ion in the unit cell, R is a translation vector of

the lattice (which we take to be body-centered cubic), k is a vector in the first

Brillouin zone, and N is the number of unit cells, then one find; 6 that for each
uc

value of k the allowed values of $w are the eigenvalues of the matrix A, whose

components are

A..I = [gi OH - 2r., J.i, .sin.i' (0)] 6.i +2Ji. (S'-) siZvis (k) (5)
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i k . -r i , ).r

where the indices i and j label the ions in the unit cell, and V = 1, (• -)I

the sum being taken over nearest neighboring ions in the ith sublattico. The dimensionality

of this matrix is equal to the number 6f magnetic sublattices, i.e., 20 for YIG and 32 for

GdIG. These matrices are shown in Fig. 1 and 2, where the submatrices are given in Fig.

3-7. The numbering of the rows and columns of A.. correspond to the numbering of the'1

magnetic ions as given in Table I.

Let us consider some general properties of this matrix, A... It can be transformed

into the form,

B C
(~ " ), (6)-*D

where D and B are Hermitian submatrices. To diagonalize A, we look for a matrix 0

such that

t
OAO=Ad (7)

where A is diagonal, and where, due to the form of A, 0 and 0t satisfy the0 satify thecon-

ditions

211 212 t 211 -21
0 0 =1,0 =( ),0 = ( 0* 2) - (8)

0 -* 0*
221 222 ~ .2 22

where the 0.. are suitable submatrices. Since A is not Hermitian, the roots need not
3

be real, but, as indicated by Douglass, this would imply an unstable ground configuration.

In terms of the occupation numbers, n ok, the energy levels of the spin system are ap-

proximately

00
E=E ÷k nlokI (9)



I

ca (k) AOad (k)

ad-(k) -Add (-k)
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where p labels the branch of the spectrum and E00 is the ground state energy. In the

Appendix we show that the temperature dependence of the frequencies of the normal modes
12

does not affect the zero point energy.

Let us now calculate 1Aok ' the change in the magnetic moment when n0 k Is

increased by one, remembering that the magnetic moment of a state is given by the derivative
13

with respect to the magnetic field of the energy of that state. Then

d
IDk - "Hnk +1)1•w• -nk IKk I] (k0a)

d d
XWt w w ,kI (101,)

dH k- k,

where a ' the polarization of the 0th mode, is just the sign of .wpk Using pertur-

bation theory one finds

M~k= % t2 dA(k) 0)t0G ) I(1

O d )H ID 0

where G is diagonal and G is the g value of the mth ion in the unit cell. Whenas- mm

all the g values are the same, as for YIG and GdIG, one has the simple result that

go k = (12)

We now consider some properties of the solution to this eigenvaoue problem taking

account of the symmetry of the gcrnet lattice. For k =0, the zymmetry is sufficient

to permit a factorization of the secular determinant and thence a complete analytic

determination when k lies along a [I 11] direction, which we assume to be the case in

the following discussion. We denote by R the operator which rotates the crystal about

2eWthe [I|]I I] direction by -3-oWe note that since R commutes with ,A, the eigenvectors.
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3of A are also elgenvectors of R . Since R = 1, the eigenvalues of R are just the cube

2 2,iroots of unity, I, X,, and X , where )L. = e The secular equation may then be

written in the form,

DetIA(, 1) -)Wk 1 111A(,.) A kl(k X 2) x21  0 , (13)

where the elgenvectors of A (k, r) are associated with the eigenvalue r of R. These

matrices are given in Fig. 8 and 9, and in Table II we give the linear combinations of

rows and columns of A which correspond to the rows and columns of A(k, r). Using

Fig. 9, one verifies that

-1 A* , 2)
2= A , (14)

where P is a unitary transformation which interchanges rows and columns as follows:

3 1 6, 4 - 5, 7 z 10, 8 ; 9. Since the frequencies are assumed to be real,

2A!(l,X) and: A(, 2 ) have the same eigenvalues.

Although the secular equation factors, analytic solutions are obtainable only

3,4at the center or extreme corner of the Brillouin zone. However, since the mag-

netic properties at the lowest temperatures depend only on the behavior of the low

energy part of the spectrum it may be useful to exapnd the energy of the acoustic branch

in powers of k. Due to the cubic symmetry this expansion takes the form

g Da 2 2E444 2 2 2 22 2
+Ea k +Fa (kx k y k kz + k + .... (15)

Xy x z Y z

4
By perturbation methods one finds

2 00 Jo i 125 Jad + 7 5 Jdd -20 Jdcc S 5ac cD -(16) 16(-5 +6SC)
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For YIG (S = 0) one also finds
c 2

5 (48Jaa 25 ad + 12Jdd)
E - 12288 [(32Jaa - 19 Jad + 1 2 Jdd) - Jad ,t(17)

2
5 96Jad2

F - 12288 [(128J. + 16J) + - (18)
0 ad 8.J1a - 6J ad

For GdIG the expressions for E and F are somewhat unwieldy and hence it may be

more revealing to give approximate expressions:

2
"6ScD 5

E =+ +-160Jaa + 9SJad - 60J44 +
6(-5 + 6S ) 12288 (-5 * 6S )

C C

5(48Jqo 25Jad + 12Jdd) 2

+ Ja (19)

2
5 240 Jed

F = C-640J - 80J + J , (20)
12288(-5 +6Sc) aa aa 3Jad - 4Jaa

where A = -10Jdc + 20Jac which is the energy level splitting of the rare earth ion

in the WMF approximation. For GdIG the term in-Eq. 15 involving F is much less

important than that involving E, which can usually be adequately approximated by

the first term of Eq. 19.

Several observations about these expansions should be made. One sees that

the first anisotropic term is that involving F, which vanishes for JCa = Jcld = 0.

In any event, one sees that ratio F/E is small for reasonable values of the other

exchange integrals, in agreement with our assumption that the energy surfaces in k

space are nearly spherical. One also pIotes that E has the opposite sign from D
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since all the exchange integrals are taken to be negative, with Jad by far the largest.

It is interesting to note the role played by the spin of the rare earth ions, Sc . It enters

all the expressions in the denominator via a factor (-5 4 6S ), thus profoundly affect-€

ing D and hence the low temperature properties. The condition for anti ferromagnetism

is just -5 + 6Sc = 0, in which case our expressions are no longer valid.

In order to discuss the magnetic properties at higher temperature, It is necessary

to solve for the normal modes numerically, which necessitated the use of an electronic

computer, considering the size of the matrices involved. We used a method of succes-

sive approximations: we eliminated the largest off-diagonal element, Amn, by per-

forming successive two dimensional rotations, i.e., by performing transformations with

a matrix 0 obeying Eq. 10 and of the form,

o.. 88 i n,m j n,m (21a)

0n = 0 j n,m Omi = 0 i X n,m (21b)

The numerical errors incurred in these calculations were negligible, as was verified

by comparing the trace of the original matrix with the sum of the eigenvalues. In

addition, for k = 0, we found agreement between our numerical results and the

4
analytic expressions of Dreyfus.

The results of calculations for various values of the ratios JaJal and

Jdd/Jad for the case of YIG are given in Fig. 10, 11, and 12. In Section IVwe

discuss the determination of Jad for given values of these ratios. The most striking

feature of the spectrum is that the frequency of most of the modes does not depend

strongly on k. We can compare the frequencies with those one would expect using
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the WMF model. Here one would have eight iron ions on a sites in an effective field,

H0 , where

gPHa = -30 ad + 40Jaa (22a)

and 12 iron ions on d sites in an effective field, Hd, where

gPHd = Joad + 201dd

From the graphs one sees that on the whole the frequencies lie somewhat below those of

the WMF model and hence the values of the exchdnge Integrals as deduced from com-

parison of experimental data with the WMF theory are expected to be less than those we

find. This discrepancy is the most serious at the lowest temperatures, just where precise

magnetization data is available.

In Fig. 13 and 14 we show the low frequency part of the spectrum for GdIG for

k lying along a C i I direction. These low optical modes correspond in the WMF

picture to the reversal of a Gd3+ spin in the effective magnetic field of the iron ions.

14
The high frequency part of the spectrum is not very different from that of YIG. We

15
have selected values of Jac and Jdc such that the average frequency of the low

6
optical modes is that determined calorimetrically. Fig. 13 and 14 therefore show the

effect on the spectrum of varying the ratio J /Jdc keeping the average of the low

optical frequencies constant. For a given value of this average frequency varying the

iron-iron exchange integrals has relatively little effect on the low frequency part of

the spectrum. In contrast, as the ratio Ja/Jdc is increased, the low optical modes

are split apart and the average frequency becomes significantly less than the WMF split-

ting which is given by

g0Hc =_-10J dc + 20Joac .(23)
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These results agree with the analytic expressions found by Dreyfus4 for k = 0, which show

that the spread in the low optical modes is roughly proportional to JRE 2S where J is
REc RE

an iron-rare earth exchange integral

III. CALCULATION OF THE MACROSCOPIC PROPERTIES

Once the spin wave spectrum has been found, the magnetization and the specific

heat are easily calculated.16 For instance, for the magnetization one has

1 1l J M(k) dk , (24)

8 n B.Z. 1 -exp(-xn(k))

where the sum is taken over the normal modes, n, the integration over the Brillouin zone,

IAn(k) is given by Eq. 11 and xn (k) = where k is the Boltzmann constant.kBT B

In order to calculate M (T) from the spectrum as determined for k lying along a [II1]

direction, we assumed spherical energy surfaces and integrate over a sphere of radius

41kmax 3  2w 3k max such that w_____ = 2(-) since there are two ions per unit cell. Therefore
3

k
maxmax

M (T)= M(0)" 8--. 13 1 Y (k) 4wk 2dk (25)
0n n I 1 exp(-xn(k))

For YIG and GdIG where all the ions have the same g value, one can calculate the

magnetization at low temperature when the expansion of Eq. 15 is valid:

M (0) kBT 3/2 3 kBT 5E+F
dM =M(0) - M(T) STOT (- ) [•(3/2) -'C(5/ 2)- (D)) , (26)

TT 4vD D

where STOT is the total spin per unit cell, ie., STOT = 20 for YIG and STOT - 32

for GdIG. In an analogous way one finds the specific heat to be



k max exp(-xW(k))-
C =" k 8 Yxn (k)j2 ' 4wk dk (27)

he t. n n z -a e f -xiked

where V is the volume. Again in zero applied field one can calculate the specific heat

when the expansion of Eq. 15 is valid..

S= Vka L3 5 ( k.__ )3/2 CC(5/2) - 7/4C(7/2) k.-B-(--( 5 E+F (28)

Expansions for the case when there is an applied field have been given by Robinson 17

assuming a quadratic dispersion relation. From his graphs one can see the relatively

large effect of a magnetic field on the magnetization.

It is interesting to consider the range of validity of the expressions (26) and (28).

Taking 1/J ad = I , Ja/Jad = .2, and Jdd/Jad = .3, in rough accord with experi-

mental data, one finds using Eq. 16, 17, and 19 that E/D = .31 for GdIG and .12

for YIG. Using Eq. 27 we find a 10% deviation from pure T3/2 behavior for the specific

heat when kB T o D/8 for YIG and kBT z .04D for GdIG. Since DAB is 450 K for

YIG and 15 K for GdIG, one sees that whereas YIG exhibits T3/2 behavior below say

60 K, GdIG may never really obey a T3/2 law since below 1 K anisotropy and dipolar

18
perturbations will influence the thermal properties.

We now estimate the effect of the temperature dependence on our calculations.

In the Appendix we show that at low temperatures one should use the average frequencies,

XJo, to calculate the thermodynamic functions where

K'w(o) .+$w(T)
X Ot - 2 (29)

z
To calculate Xw(T) one simply replaces SI by its thermal value; however, for the iron
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ions below say 50 °K the thermal value does not differ appreciably from the value at

T = 00 K. In Table III we compare the frequencies of the normal modes, X@, calculated

for T = 00 K with those calculated fo. T = 200 K. The small temperature variation of

those frequencies is not experimentally detectible at present. It is interesting to note

the increase in the frequencies of the low optical modes as the temperature is raised and

the RPA and the WMF become equivalent. This effect results from the change in the

effective field acting on the iron ions due to the slight temperature dependence of the

rare earth magnetization below 20 K, and is not to be confused with the effect of rare

earth-rare earth interactions,- or*with the effect of the temperature dependence of the

iron sublattice magnetization both of which we have neglected.

IV. THE DETERMINATION OF THE EXCHANGE INTEGRALS

FROM EXPERIMENTAL DATA

1. YIG

Yttrium iron garnet has been the object of several experimental studies from

which information about the exchange integrals could be obtained. Using a molecular

field analysis, Pauthenet was able to determine values of the exchange integrals which

19
were later apparently confirmed by high temperature susceptibility measurements.

-1
However, the values of the exchange integrals so determined give a value of 15 cm

for D (see Eq. 15) which is in disagreement with several subsequent determination of

this quantity. For instance, by comparing the experimentally determined low tempera-

ture specific heat6, 20-22 with the results of the spin wave calculation, one was able

-1
to deduce that D - 27 cm . This value of D has been corroborated by observations

23, 24
of the microwave instability in YIG. Since the determination of D using a spin

wave theory ;4 the more unambiguous both from a theoretical and an experimental
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standpoint, we assume it to be the more reliable. However, fixing the value of D to be

27 cm"1 does not serve to determine the exchange integrals uniquely since from Eq. 15

we have:

5
D = 5 (8J - 5 1ad + 3 jdd) (30)

The problem we consider is to determine values for Jaa Jdd ' and Jad consistent with

the known value of D and which best reproduce the detailed behavior of YIG.
25

Recently Wojtowicz has suggested that by taking Jaa = Jdd = 0, one might

be able to fit the susceptibility data above the Ne'el point using a linked cluster ex-

pansion rather than a molecular field approximation. He was able to interpret the ex-
-1

perimental data in this way, but using a value of Jad which corresponds to D = 38 cm

It is quite possible, however, that one could also fit the data using non-zero values of

Jaa and add although the analysis would be formidable. In any event, exact agree-

ment between determinations of D over widely separated temperature intervals is not to

be expected, due to the sensitive dependence of the exchange integrals on the lattice

constant. Also, the variation of D with temperature, as determined by microwave in-

stability measurements, does not seem to be consistent with Jac = Jdd = 0, at least
24

according to the RPA.

Recently I. Solt26 has made accurate measurements of the magnetization of YIG

in a magnetic field of 4000G for temperatures between 5 and 500 K using the properties

of magnetostatic modes. Since in this temperature range the magnetization varies by

only .4%, one should check that volume changes do not influence the magnetization
•27

appreciably. In fact, using the Gr~neisen relation and taking the compressibility to

28be roughly that at room temperature as measured by Kaminow, one finds the change in
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the magnetization due to the explicit voluiae depenc'ence to be

5C•• (3)(7 x iR "!3 cm2 )5

O•V dyneSL-)I7xdT 3 ' (36C, joules), 2.5 x 10
- 0 Lattice 3WO cm

(31)

where y Is the C'r3niscn consi'ant an6 y the compressliility, so O'hat the volume change

is responsi!,'-l for only i% of 'he odsrarvec' uecrease in the rmagnotization at 5"°0 K. (The

lattice specific heat was estimated from the data of Harris and Meyer"). It is also known

that the temperature dependence of the exchange integrals due to the change in the lat-

29
tice constant in this temperature range is negligible.

However, the application of an external field of even 4C(• G affects the mag-

neti ation signi Tiently in this temperatures, as we have mentioned previously. The

magnetization was measured by measuring the fields for resonant excitation of the (210)

and (220) magnetostatic modes at a frequency of 9C92 mc. The resonance conditions
26.. .

are

8,r
210 = /V 15 M(H 2 10) (32a)

4w
H -w( (32b,)

220- /v - • M(H 2 20 )

where M(H) is the magnetization M in a field H and Himn is the field for resonance

of the (lmn) magnetostatic mode. The magnetization found by subtracting the second

equation from the first corresponds to an average field H for which

H8w 4- 4L M (A) (33)
210 220 = 15 M(H 2 10) + -gM(H2 20) = 1-H5 .
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Expanding. M(H 21 0) and M(H220) about H, one finds

H H220 + 2H 2 10  = 4 W M (34)

3

Anderson and Suh130 have found a dispersion relation for the acoustic mode taking

account of dipolar interaction, which for a sphere can be written,

2 = 2 2 41 M)I[ 2k2 41 H-±r r i 2
1)2) =[Da k +gP(H--M)][D ÷gP(H--M+4'Msin ek)] , (35)

where is the angle between k and the magnetic field, H. Since

4wM,/3H - .2 one finds

w -~ Da2k2 k gP(H -4 M + 21 M sin 2 k (36)

For a given value of k this dispersion relation introduces a breadth of 2wgPM

into the spectrum, but leaves the average frequency unchanged. Accordingly, the

demagnetizing field can be neglected in the first approximation. In addition we have

assumed that the effects of anisotropy can be taken account of by the usual anisotropy
31

field, -4K/3M, where K is the first order anisotropy constant. Taking
8

4M/W5 = 487Q and K/M = 130G we find the total field to be:

g HoT = _ 4K 4, 4K 2(
TOT 3M = W/Y +1 M 3M 302cm (37)

In order to determine AM(T) = M(O) - M(T) it is necessary to extrapolate

M(T) to T = 0, which, however, can not be done without introducing a significant

error. In the low temperature limit M(T) depends only on H and D, which are known,
tot

so that M(0) could b• determined by comparing the values of AM for temperatures below
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100°K with the calculated values. The uncertainty in this procedure did not affect our

determinations of the exchange integrals. We calculated the magnetization for various

values of the ratios JaaýJad and Jd/Jad the value of Jad being determined to give

the known value of D. By comparing the family of curves so obtained with the ex-

perimental data it was then hoped to determine Jaa and Jdd" It happened, however,

that the magnetization was not sensitive to variations of the ratio Jd/Jad. On the

other hand the value of Jc/ ad did influence the calculated magnetization curves,

as can be seen in Fig. 15. We were thus able to deduce J ad/J .2, in contrait
25

to the approximate analysis of Wojtowicz. Considering the geometry of the garnet

lattice, it would be surprising if the exchange coupling between neighboring d ions

were weaker than that between neighboring a ions, since the latter are farther apart

than the former, so that we assume Jdd > Jac . Since there is an optical modes whose

frequency for k = 0 is 2DJ - 40Jdd we were able to establish the upper bound

Jdd < '4 Jad * In Table IV we give the corresponding sets of exchange integrals together

with those of GdIG whose determination is discussed below. It is hoped in the future to

estimate the ratio Jd/Jad from the knownI value of the Niel temperature.

2. GdIG

As we have mentioned previously, the details of the low frequency part of the

spectrum for GdlG are not very sensitive to the exact values of the iron-iron exchange

Integrals (assuming D to be kno*n). We therefore, somewhat arbitrarily, made calcu-

lations aking Js/Jod = .2 and Jdd/Jod = .2 in the first case and Jdd/Jad = .3

In the other. The object of such calculations was to determine Jac and Jdc separately

by fitting the experimental results. Dreyfus4 has previously determined values of J ac
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and J using the frequencies for ,k - 0 for a particular value of the ratio J /J
dc 0.ac dc~

Although this procedure does not cause a great error in the determination of the exchange

integrals, we thought it worthwhile to attempt such a determination taking account of

the k-dependence of the low optical modes and also seeing to what extent varying the

ratio J a/Jdc influenced the specific heat. Above 100 K the specific heat (per unit cell)

is well approximated by 24 Einstein functions appropriate to the average frequency for

large values of k, since the factor k2 dk in the density of states weights the large values

of k the most. This average frequency is known accurately from calorimetric measure-
6

ments and for a given value of J a/Jdc fixes the values of these exchange integrals.

We then compared the experimental and theoretical values of the specific heat below

50 K for various values of J a/J dc. The results of such a procedure are shown in Fig.

16. It was found that J ac/Jdc = .25 gave the best fit to the data for both sets of

values of the iron-iron exchange integrals considered. The corresponding values of

Jac and Jdc which depend slightly on the choice of the values of the iron-iron exchange

integrals are given in Table IV and are about 25% larger than one would expect using

the WMF approximation. The reason for this can be seen from Fig. 13 and 14 where we

indicate both the frequency corresponding to the WMF acting on a rare earth ion as given

by Eq. 23 and the average frequency of all the low optical modes. Equating the frequency

of the single ion splitting as determined calorimetrically with the WMF frequency clearly

leads to smaller values of the exchange integrals than we find. One can also compare
-1

the values of Jac and Jdc we find with those found by Dreyfus. Jac = 0.49 cm and
-1

J dc= 4.17 cm . This surprising discrepancy between his values and ours is mostly due

to a numerical error in his calculation of the lowest optical mode which unfortunately

affects the determination of the exchange integrals rather critically.
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It should be noted that we were unable to obtain a good fit to the specific heat

data for temperatures below 30 K. The reason for this discrepancy is not clear at present

and will be investigated experimentally in the near future. We did not attempt to obtain

a better fit by altering the value of D as we did previously6 which accounts for most of

the difference between the calculations presented here and those given previously. Above

10 K the calculated and experimental values of the specific heat are in close agreement.

As we show in the Appendix, one does not expect that the small temperature dependence

of the frequencies of the normal modes will influence the specific heat significantly.

In Fig. 17 we show the magnetization of GdlIG below 200 K as calculated for one

of the sets of exchange integrals given in Table IV. The curve calculated for the other

set of exchange integrals is indistinguishable from that shown. The magnetization of GdIG
1 32

has been measured by Pauthenet and by Wolf and Bozorth, but due to experimental

difficulties these measurements are not sufficiently refined to be suitable for comparison

with spin wave theory in this temperature range. No information could be obtained from

33
the absorption spectrum of GdcIG as measured by Sievers and linkchom, since the single

ion transitions are forbidden in GdIG.5
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TABLE I.

THE LOCATION OF THE MAGNETIC IONS IN

THE UNIT CELL OF THE GARNET LATTICEa

a sites d sites c sites

1. 0,0,0 0,1/4,3/8 0,1/4,1/8

2. 1/2,1/2,0 3/8,0,1/4 1/8,0,1/4

3. 0,1/2,1/2 1/4,3/8,0 1/4, 1/8,0

4. 1/2,0,1/2 0,3/4,1/8 0,3/4,3/8

5. 1/4,1/4,1/4 1/8,0,3/4 3/8,0,3/4

6. 3/4, 1/4,3/4 3/4,1/8,0 3/4,3/8,0

7. 3/4,3/4,1/4 0, 1/4,7/8 0, 1/4,5/8

8. 1/4,3/4,3/4 7/8,0,1/4 5/8,0,1/4

9. 1/4,7/8,0 1/4,5/8,0

10. 0,3/4,5/8 0,3/4,7/8

11. 5/8,0,3/4 7/8,0,3/4

12. 3/4,5/8,0 3/4,7/8,0

a The coordinates of the magnetic ions are given as fractions of the lattice parameter which

is 12.378 % for YIG and 12.465ý for GdlG. 1 The additional sites in the unit cell are
obtained by adding (*t t, j) to the above sites. This table is compiled from reference 7.
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TABLE II.

THE TRANSFORMATION WHICH REDUCES THE SPIN WAVE MATRIX'

For A(.k, 1) For A(k,X)b

1. aI

2. 1/ v3 (a2 + a3 -. a4) 1. / (a2 + >.a3 + " 4)

3. a5

4. I/A3 (a6 a7 + a8) 2. 1/2 N + AP -+ A.208)

5. 1/03(d 1 d2 +d 3) 3. 1/3 (d! +,Xd2 +X2 d3)

6. 1/3 (d4 + d5 + d6 ) 4. 1/vt (d4 + Xd5 + d6)

7. 1/03 (d7 + d8 + d9 ) 5. 1//3 (d7 +)xd 8 , +2d 9 )
8. I/A3 (dl0 + , I1 + d 12) 6. I/43 (dl0 +)-.dil + .2d12)

9. 1/03 (c +c2 +c3 ) 7. I/N/3 + ,c2 + X,2¢3)
10. I/"3(c4 +c 5 +c6 ) 8. 1//3(c4 +'Xc5 +X2c6)

1'. 1/03 (c7 + c8 + c9 ) 9. 1/4 3(c7 +xc 8 +) 2c9 )

12. 1/V3(c0 +c11 +c 12) 10. 1/t(c 10+Xc )2)

aThe rows and columns of the matrices Ak, 1) and Al,),) are labelled by numbers. The rows

and columns of the original matrix arelcaelled by a letter and a number. The letter tells the
sublattice and the numbering within the sublattice is according to Table I.

bThe linear combinations for A o,ý, ore found by substituting X 2 for ;k everywhere.
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TABLE III.

TEMPERATURE DEPENDENCE OF THE FREQUENCIES OF

THE NORMAL MODES OF GdIGa

r 1 r

T.- 0°K T = 20°K T = 0°K T u200 K

1. 19.733 19811 19.733 19.811

2. 9.012 9.054 13.561 13.634

3. -3.307 -3.164 -18.741 -18.645

4. -15.083 -14.978 -21.083 -20.978

5. 0.000 0.000 -12.957 -12.845

6. 1.056 1.057 -16.202 -16.607

7. 13.561 13.634 1.101 1.101

8. 11.687 11.767 0.759 0.769

9. -12.957 -12.845 0.720 0.731

10. -18.741 -18.646 1.056 1.057

11. 0.759 0.769

12. 1.101 1.101

'These frequencies for k = 0, which are given in units of IJad I . 1 ..are calculated.
according to Eq. 29. r is the rotation eigenval ye. The modes with rotation eigerivalue
X are degenerate with those with eigenvalue ). , (see Eq. 13).
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TABLE IV.

POSSIBLE VALUES OF THE

EXCHANGE INTEGRALS IN YIG AND GdIGa

• 1%/-d dd-Jc 0d/- -. aa Jdd -Jdc acc

.2 .2 31.8 6.35 6.35 7.00 1.75

,2 .3 35.6 7.12 10.68 7.12 1.78

.2 .4 40.5 8.09 16.18 not calculated

-1aValues of the exchange integrals are given in cm .
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APPENDIX

Calculation of the Zero Point Energy

• • 34
To calculate the zero point energy we use the Holstein-Primakoff expansions

5 z -S-+0 (Ala)

S 4,tS a* .(Alb)

S. =4 a* +. (Aic)

for spins oriented in the plus z direction, and

Z + -

S. -S. - a.a. (A2a)

I I I I

Si /2S a... (AZb)

i ~ II

S. = 2Sa. ... (A2c)

+ -

for spins oriented in the minus z direction, where an a i -1. The Hamiltonian

can be expanded as

0 - 1 44-

SE 0+ ET a. a + *aEU*.a. a. +jEU a* a (AM)

i ij'i ' ll

0*
where E is the expectation value of the energy in the Neel state, and T T

i III

and U..j = U.V.. A more symmetric form for R( is

K=CE +PT..(a. a a +. a. (A)U..a. a. ++ U a.a

)I i

÷(A-
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Thus, in this approximation the ground state energy is different from that in the Niel state

by an amount

0
A E EjLT.. +bI I j, (A5)

n n

which for a ferromagnet is zero, of course.

In the RPA one calculates the frequency spectrum at finite temperatures by sub-

stituting for S the thermal value of S . We now show that at low temperatures thisz

excitation energy is not exactly what one should use in the calculation of the free

energy, and that using the correct frequency one no longer need consider explicitly

the zero point energy.

We start by assuming that the temperature is low enough so that we may write,

E = E0 + E + 1; n jkIh k I' E n n V (M)pk io. Vk 9) k ''
kk

This formula can be made to agree with the first RPA 10or with Dysons 35resuts

with the proper choices of the coefficients, V _, . From this equation one
tplcpk'

deduces an excitation energy

$W k (nr1r) =Lk + E n 01 - V k (A7)

where nr stands for the totality of occupation numbers other than n Pk* Using brackets,

( ), to represent thermal averages, one has

$wk(T) , 4+ , V (n ) , (A8)
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where we distinguish between X k which is X k (T- 0) and XoIk(T) By expanding

the partition function,

S-A(E ÷+ A EO ) VE , ' =e n Jk " .k +. IrO, k r. noo n , ... ] (A9)

one can write the free energy as

F-E°0 +E + F($•W .)*V+ E 1,k, n.!)(nk,) , (AIO)

where F (Xwpk.) is the free energy calculated using the zero temperature frequencus.

Since

BE- T = ka n(I -e- ) (n) n (Al])
O~Wk B ýXw pk

one has

F=E0 +AE 0 F(w )+jE . V ,( F k (A12)
t•p, k..,n 'W

kk'

or using Eq. A8

F=E° 4,E°+F(,,wk)+* 0 k.(,pk.(T) - ,k.(0) (A13)

so that finally
XW Pk $W Pk.(T)

F -E° A E + F( 2 (A14)

Thus we see that whereas ,kX, k(T) is the excitation energy one might observe in a
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resonance experiment, the macroscopic properties are to be calculated using the frequency
36+o ÷W •'k(T) 3

P These considerations are only valid as long as A6 is a good approx-

2

imation, in which case we do not expect to be able to detect the thermal variation of

frequency of modes which are not excited, since the zero point energy need not be con-

sidered explicitly. In contrast, the zero point energy would have to be considered in

cases where the external parameters upon which It depends, e.g. the magnetic field, are

variable.
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CAPTIONS FOR THE FIGURES

1. The form of the spin wave matrix, A.., for YIG. The submatrices are given in

Figs. 3-7.

2. The form of the spin wave matrix, Ali, for GdIG. 1 Is the unit matrix and

A = -IOJdc + 20Jac . The submatrices ore given In Fig. 3-7.

3. The submatrix Aaa (k). Here A1 - - 30 Jad + 40 Jaa + 12 Jac Sc

A2 = -IOJ acos(ka/4), and A3 - -10J aacos(3k/4). Here and in Fig. 4-9

we use the notation kx = ky = k = k.

4. The submatrix Aad (k) . Here M1 = -5Jad exp(ika/8) and M2 = -5 Jad exp(3lk/8).

5. The submatrix Add (k). Here D = -20Jac + 20Jdd + 20dd - 4JcdSc,

D1 = -5. dd' D2 = -5 Jdd exp(ika/4), D3 = -5. dd exp(ika/2).

6. The submatrix A (k). Here L, = -2(5Sc/2)*Jacexp(ika/8),ac

L2 = -2(5Sc/2)1 Jac exp(3ika/8).

7. The submatrix Acd (k). Here G = -2(5 Sc/2)* Jcd exp(ika/4).

8. The transformed spin wave matrix of Eq. 13, A (k, 1). For GdlG the entire matrix

is solved. For YIG one solves the 8 x 8 matrix obtained by deleting the right

hand four columns and the bottom four rows. The symbols not defined in the

captions of previous figures are A4 = W3 A2 , A5 = 2A 2 + A3 , M3 = V/3 M1 ,
* *

M4 = M1 +M 2 , L3 =V/3L 2 , L4 = L1 +L 2 , D4 - -D 1 - D3 , and D5 =-2D2 .

9. The transformed spin wave matrix of Eq. 13, A (k, A.). For GdlG the entire matrix

is solved. For YIG one solves the 6 x 6 matrix obtained by deleting the right hand

four columns and the bottom four rows. The symbols not defined in the captions of

previous figures are A6 - A.(A 3 - A2), M5 = M1 + 'X2  F 6 = XM2'

+ . X M * M M +X2 MM ,2M1M6 ='M*2, M7 "MI •2M ,8 =M+2M , M9 = 2 ,
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22 2'L5 - 4`LI' ,5 =)` LI.' L 6 o L2 +X LI , 1"7 =L 2 L, L8- LI + X2L2,

L9-- L1 +X2 L2 , and D7 = -XD 3 -`2

10. The spin wave spectrum for YIG for k lying along a [1 I1 I direction, and for
/ -1

0 / ad = 0 and J dd/Jad = 0.2 which corresponds to Jad = 20.2 cm . Here

and in the following figures the polarization of the mode is Indicated by a plus or

minus sign. The elgenvalue of the rotation operator is also given. The modes

corresponding to the elgenvalues X and X.2 are degenerate.

11. The spin wave spectrum for YIG for k lying along a [ 11 direction, and for
m-1 -1

Jaa'ad = .2 and Jdd/jad = 0, or Jad = 26.2cm Ja = 5.24cm , and

Jdd =0.

12. The spin wave spectrum for YIG for k lying along a [111] direction, and for
= 2 r -1 -1 - 1

J /jad = Jd/Jad =2, or Jad = 31.8 cm and Jaa = Jdd = 6.35 cm

13. The low frequency part of the spin wave spectrum of GdlG for k lying along a
-1 -1

[111] direction, and for J = 31.8 cm'1, Ja = Jdd = 6.35cm ,and

Jac/Jdc = .25, or Jdc = 7.00 cm and Jac = 1.75 cm See the text for

a discussion of the WMF and average frequencies.

14. The low frequency part of the spin wave spectrum of GdIG for k lying along
-1 -1

[111] direction, and for J 31.8 cm , J J 6.35 cm= , and
.ad Cadd= 6 3 c

-1 -1
c/J = _-cJac dc .0833, or Jdc= 3.66 cm and Jac = 0.305 cm . For this choice

of parameters it happened that one mode was highly degenerate corresponding to

eigenvalues of the rotation operator indicated in the legend.

15. The magnetization of YIG below 500 K. The dots are the experimental values of

22
Solt . The curves were calculated for the values of the ratios Jad/Jad and

Jdd/Jod indicated by the numbers in parentheses; the corresponding values of



-1 -1
Jad are, (0,0): J ad :: 17.8 cm , (.3, .1): Jad = 38.0 cm , and (.2, .2):

Jad = 31.8 cm-1. The effective magnetic field Is given by Eq. 37.

16. The magnetic contribution to the specific heat of GdIG. The dots are the ex-
6 -1

perimental values6 and the curves are calculated taking Jad = 31.8 cm and

Jaa = Jdd = 6.35 cm . The values of Jac and Jdc corresponding to the in-

dicated values of Jac/Jdc are, Jac /J dc - .25: Jdc ' 7.00 cm and
Jac = 1.75 cm , and Jac /Jdc = - 1667: Jdc ' 4.74 cm and Jac = 0.79 cm

-1

17. The magnetization of GdlG below 200 K taking Jad = 31.8 cm I

=-1 -1 -1Jaa Jdd = 6 .35 cm ' Jdc = .00cm and Jac = 1.75 cm
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